lookup(key)
Return the list of values in the RDD for key key. This operation is done efficiently if the RDD has a known partitioner by only searching the partition that the key maps to.
>>> l = range(1000) >>> rdd = sc.parallelize(zip(l, l), 10) >>> rdd.lookup(42) # slow [42] >>> sorted = rdd.sortByKey() >>> sorted.lookup(42) # fast [42] >>> sorted.lookup(1024) [] >>> rdd2 = sc.parallelize([(('a', 'b'), 'c')]).groupByKey() >>> list(rdd2.lookup(('a', 'b'))[0]) ['c']
You need to sort RDD and take element in the middle or average of two elements. Here is example with RDD[Int]:
import org.apache.spark.SparkContext._ val rdd: RDD[Int] = ??? val sorted = rdd.sortBy(identity).zipWithIndex().map { case (v, idx) => (idx, v) } val count = sorted.count() val median: Double = if (count % 2 == 0) { val l = count / 2 - 1 val r = l + 1 (sorted.lookup(l).head + sorted.lookup(r).head).toDouble / 2 } else sorted.lookup(count / 2).head.toDouble 实验:
all_data = sc.parallelize([25,1,2,3,4,5,6,7,8,100])all_data.sortBy(lambda x:x).zipWithIndex().map(lambda x: (x[1],x[0])).collect[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 25), (9, 100)]